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SUMMARY
Theoretical literature in finance has shown that the risk of financial time series can be well quantified by their
expected shortfall, also known as the tail value-at-risk. In this paper, I construct a parametric estimator for the
expected shortfall based on a flexible family of densities, called the asymmetric power distribution (APD).
The APD family extends the generalized power distribution to cases where the data exhibits asymmetry.
The first contribution of the paper is to provide a detailed description of the properties of an APD random
variable, such as its quantiles and expected shortfall. The second contribution of the paper is to derive the
asymptotic distribution of the APD maximum likelihood estimator (MLE) and construct a consistent estimator
for its asymptotic covariance matrix. The latter is based on the APD score whose analytic expression is also
provided. A small Monte Carlo experiment examines the small sample properties of the MLE and the
empirical coverage of its confidence intervals. An empirical application to four daily financial market series
reveals that returns tend to be asymmetric, with innovations which cannot be modeled by either Laplace
(double-exponential) or Gaussian distribution, even if we allow the latter to be asymmetric. In an out-of-
sample exercise, I compare the performances of the expected shortfall forecasts based on the APD-GARCH,
Skew-t-GARCH and GPD-EGARCH models. While the GPD-EGARCH 1% expected shortfall forecasts
seem to outperform the competitors, all three models perform equally well at forecasting the 5% and 10%
expected shortfall. Copyright  2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

What is the tail behavior of financial time series, and in particular whether we can quantify it,
is a question of fundamental importance in risk management. Ultimately, this question cannot be
answered without having an appropriate measure of risk. This paper focuses on a particular risk
measure—called the expected shortfall—which has gained considerable interest in the financial
community. In financial terms, the expected shortfall—also known as the tail value-at-risk (tail-
VaR) or (˛-risk)—represents the tail-loss in the market value of a given portfolio, over a given
time horizon. In mathematical terms, the expected shortfall is the expected value of (minus) the
difference between the portfolio’s return and its ˛-quantile, conditional on this difference being
negative.

There exists a long-standing literature on risk assessment in economic models, some of which
has emphasized the importance of the expected shortfall for the purposes of risk measurement.
Examples include decision-theoretic models of choice under uncertainty (see Feldstein, 1969;
Hanoch and Levy, 1969; Bawa, 1978) or models of optimal portfolio choice (see Markowitz,
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892 I. KOMUNJER

1952; Feldstein, 1969; Bawa and Lindenberg, 1977; Bawa, 1978). More recently, there has been
interest in the axiomatic foundations of expected shortfall. Those have been established in papers
by Artzner et al. (1999) and Follmer and Schied (2002). Finally, the important work by Bassett
et al. (2004) provided the link between the Choquet expected utility theory and the expected
shortfall, thus grounding it within the decision-theoretic framework of models of choice under
uncertainty.

Unsurprisingly, the econometrics literature on this popular risk measure has been rapidly
growing. Current work offers a variety of approaches to the expected shortfall estimation, ranging
from fully parametric (see Aas and Haff, 2006), to semi-parametric (see McNeil and Frey, 2000;
Bassett et al., 2004), and nonparametric (see Scaillet, 2004; Chen, 2005; Fermanian and Scaillet,
2005; Scaillet, 2005). Despite a strong appeal of the semi- and nonparametric methods—as they
make weak assumptions about the true data-generating process—their difficulty lies in the ability to
estimate the expected shortfall variance. Indeed, Bassett et al.’s (2004) semi-parametric estimator
of the expected shortfall can be viewed as a by-product of a standard quantile regression (see
Koenker and Bassett, 1978). As such, it inherits all of the difficulties related to the consistent
estimation of the asymptotic covariance matrix, typically found in the quantile regression literature
(see Buchinsky, 1995; Fitzenberger, 1997; Komunjer, 2005).

In this paper, I construct a fully parametric estimator of the expected shortfall. As already
pointed out, the main advantage of this approach over the semi- or nonparametric approaches
is that it allows the expected shortfall models not only to be estimated but also easily tested
for. Its main drawback, on the other hand, is to impose strong constraints on the shape of the
density of interest, and in particular on the distribution tails. For example, a double-exponential
(Laplace) assumption forces the density tails to decay exponentially, while a Gaussian assumption
implies exponential square decay. Hence, a desirable feature of a fully parametric approach is to
be based on a flexible family of densities.1 Such a family should generalize most commonly used
benchmarks, e.g. Gaussian and Laplace, be sufficiently flexible to generate the range of shapes
that are of interest in financial applications, e.g. skewness and heavy tails, be of closed form and
sufficiently parsimonious to facilitate estimation and testing.

Previous literature contains many flexible distributions that satisfy most of the above features:
(1) stable distributions, Pearson family or Tukey-� family generate a broad range of skewness
and kurtosis values, but do not have closed form density functions, hence cannot be estimated
via maximum likelihood methods. Particularly interesting flexible densities are obtained as
generalizations of Student-t density: (2) a generalized t-distribution and a skewed t-distribution
(see Hansen, 1994; Fernandez and Steel, 1998; Giot and Laurent, 2004; Patton, 2004; Kuester
et al., 2006; Paolella, 2006). They allow for skewness and excess kurtosis and are parsimonious.
In general, however, those densities are not log-concave. The generalized t-distribution becomes so
as its number of degrees of freedom tends to infinity, in which case it reduces to (3) a generalized
power distribution (GPD).2 This family allows for a flexible tail-decay parameter but does not allow
for any asymmetry in the data, which can potentially affect the precision of the corresponding
expected shortfall estimates. This drawback is particularly severe in the context of financial return
time series, which are known to have nonzero skewness.

1 The use of flexible parametric forms in order to avoid the disadvantages of nonparametric inference has already been
advocated by the literature on partially adaptive estimation, for example (see McDonald and Newey, 1988; McDonald
1991, 1997).
2 Also known as the exponential power distribution (EPD) or the generalized error distribution (GED). For the limit result
on the generalized t-distribution see Johnson et al. (1994, p. 422).

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 891–921 (2007)
DOI: 10.1002/jae



ASYMMETRIC POWER DISTRIBUTION 893

I address the above issues by examining a particular family of distributions that combine the
flexible tail decay property of the GPD with the asymmetry. I call this family an asymmetric power
distribution (APD) family of densities. While some of the properties of the APD densities—such
as their moments, for example—have already been studied in the literature (see Fernandez
et al., 1995; Ayebo and Kozubowski, 2003) little attention has been devoted to their risk-related
characteristics, such as their quantiles or expected shortfalls.

The first contribution of this paper is to complete the existing results by deriving analytic
expressions of the APD quantiles and expected shortfalls. Its second contribution is to develop
the asymptotic theory for maximum likelihood estimators (MLEs) of the APD parameters. To the
best of my knowledge, the current literature does not provide complete estimation results for the
distribution families similar to the APD. I fill this gap by showing that the APD MLE is consistent
and asymptotically normal with an asymptotic covariance matrix which equals the inverse of the
Fisher information matrix. I moreover construct a consistent estimator of this asymptotic covariance
matrix based on the APD score, whose analytic expression I derive in the paper. In particular, this
paper provides estimators for the expected shortfalls and their standard errors which are easy to
compute.

The remainder of the paper is organized as follows. Section 2 gives a formal definition of an APD
density and studies basic properties of random variables which are APD distributed. In Section 3,
I derive an analytic expression for the expected shortfall of an APD random variable. Section 4
discusses the simulation of an APD random variable and the maximum likelihood estimation of
its parameters. Finally, Section 5 gives an empirical application to several daily financial return
series and concludes the paper. Appendix A contains useful lemmas whose proofs can be found
in a technical appendix available on the journal’s website. Appendix B contains the proofs of the
propositions stated in the text.

2. DEFINITION AND BASIC PROPERTIES

The family of distributions studied in this paper combines the flexible tail decay property of
the GPD family, measured by a parameter denoted �, with the asymmetry, quantified by a
parameter ˛, 0 < ˛ < 1. Hence, it can be viewed as a generalization of the GPD family—which
corresponds to the special symmetric case ˛ D 1/2—to a broader class of densities that are
possibly asymmetric. I therefore call it the asymmetric power distribution (APD) family of
densities. A formal definition of a probability density function (pdf) of an APD random variable
is as follows.

Definition 1 (APD pdf): Consider a function f : � ! �Ł
C , u 7! f�u� such that

f�u� D


υ1/�

˛,�
�1 C 1/�� exp

[
�υ˛,�

˛� juj�
]

, if u � 0,

υ1/�
˛,�

�1 C 1/�� exp
[
� υ˛,�

�1 � ˛�� juj�
]

, if u > 0

�1�

where 0 < ˛ < 1, � > 0 and υ˛,� D 2˛��1 � ˛��

˛� C �1 � ˛�� . The function f�Ð� thus defined is a probability

density function and any random variable U with density f�Ð� is called standard APD.
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It is easy to verify that: (i) 8u 2 �, f�u� ½ 0, and (ii)
∫

� f�u�du D 1, which ensure that f�Ð�
is a probability density.3 The function f�Ð� is moreover continuously differentiable on �Ł . The
parameter � controls the tail decay whereas ˛ measures the degree of asymmetry.

Note that the probability density in equation (1) can be viewed as a reparametrization of the
skewed exponential power distribution (SEPD) proposed by Fernandez et al. (1995) or of its
generalized version—asymmetric exponential power distribution (AEPD)—proposed by Ayebo
and Kozubowski (2003).4 For example, if V has a standard SEPD density with shape parameters
� D [˛�1�1 � ˛�]1/2 and q D �, then [˛�1 � ˛�]1/2�2υ˛,���1/�V has the standard APD density
with shape parameters ˛ and �. While in the parametrizations of SEPD and AEPD, the parameters
controlling asymmetry (� and � D 1/� respectively) have no immediate interpretation, in the APD
representation the asymmetry parameter ˛ corresponds to the probability that U be lower than its
mode—zero. In other words, under the APD density parametrization (1), ˛ is the portion of the
probability mass under f�Ð� that is left from the mode of U. Hence departures of ˛ from a half
directly account for the extent of asymmetry in f�Ð�.

When ˛ equals one half, the APD pdf defined in equation (1) is symmetric around zero. In this
important special case f�Ð� reduces to the standard GPD density.5 The GPD family, indexed by
a single parameter �, includes distributions that change gradually from short-tailed distributions,
for 1 > � ½ 2, to fat-tailed ones, when 2 > � > 0, as the exponent � decreases. Special cases of
the GPD include: uniform (� D 1), Gaussian (� D 2) and Laplace (� D 1) distributions.

When ˛ is different from one half, the APD pdf is asymmetric. Special cases � D 1 and
� D 2 have already been studied in the literature. They correspond to the asymmetric Laplace
distribution,6 obtained when � D 1, and the two-piece normal distribution,7 obtained when � D 2.
The original motivation for introducing such distributions was mainly to generalize the simple
Laplace (double exponential) and Gaussian cases to situations in which the two halves of the
distribution have different averages. Figure 1 plots the standard APD density for fixed values of
the tail parameter �.

One can easily generalize the APD family in order to accommodate for different location and
scale parameters, by using the location-scale property of the pdf f�Ð� in equation (1). For given
values of ˛ and �, such that 0 < ˛ < 1 and � > 0, let X be an APD random variable defined as

X D � C 	U �2�

3 Note that 0 < 2˛��1 � ˛�� � ˛2� C �1 � ˛�2� < ˛� C �1 � ˛��, so 0 < υ˛,� < 1.
4 The density of a standard SEPD random variable is given by

f�u� D
{

c exp[� 1
2 ��juj�q], if u � 0,

c exp[� 1
2 �juj/��q], if u > 0

where �, q > 0 and c�1 D 21/q�1 C 1/q��� C 1/�� (see Fernandez et al., 1995, Kotz et al. 2001, p. 271). AEPD
density—with location parameter equal to zero—is simply obtained from the expression above by letting � D 1/�
and replacing 21/q (respectively 2) with a scale parameter 
 > 0 (respectively 
q) (see Ayebo and Kozubowski, 2003).
5 See Johnson, et al. (1994, p. 194) and Kotz et al. (2001, p. 219).
6 Also known as two-piece double exponential distribution. See Govindarajulu (1966), Birnbaum and Mike (1970),
Bain and Engelhardt (1973), Sheynin (1977), Jakuszenkow (1979), Lingappaiah (1988), Johnson et al. (1994, p. 193),
Balakrishnan and Basu (1995), Balakrishnan et al. (1996), Kotz et al. (2001).
7 See Johnson et al. (1994, pp. 173, 190).
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Figure 1. APD density: X D u and Y D f�u� for ˛ D 0.1, 0.2, 0.3, 0.5 and � D 0.7, 1, 2, 4

with a location parameter �, � 2 �, and a positive scale 	, 	 > 0, so that X has density
fX�Ð�, fX�x� D 	�1f�	�1[x � �]�, for any x 2 �, where f�Ð� is as defined in equation (1). In the
most general case, then, the APD density fX�Ð� depends on four parameters ˛, �, � and 	, with
0 < ˛ < 1, � > 0, � 2 � and 	 > 0. In Appendix A, I provide the expressions for the cumulative
distribution function (cdf) F�Ð� of a standard APD random variable U and its quantile function
F�1�Ð�. The expressions for the cdf FX�Ð� of X and its inverse F�1

X �Ð� are then easily obtained
from FX�x� D F�	�1[x � �]�, for any x 2 �, and F�1

X �v� D � C 	�1F�1�v�, for any v 2 �0, 1�.
An interesting property of any APD random variable X, resulting from the expressions of FX�Ð�

and its inverse, is that ˛ D FX���. In other words, the probability ˛ is such that the mode � of
the APD density fX�Ð� corresponds exactly to the ˛-quantile of X. For example, in the symmetric
case where � is the median of X, the probability ˛ equals one half.

In financial applications, the APD variable of interest ε is often standardized: E�ε� D 0 and
var�ε� D 1. In this case, the pdf of ε, denoted fε�Ð�, is given by

fε�z� D


�
�

�2/��
�1/��2 exp

[
�
(

�2/��
˛�1/��

)�
j z
� C 1 � 2˛j�

]
, if z � ��1 � 2˛��,

�
�

�2/��
�1/��2 exp

[
�
(

�2/��
�1 � ˛��1/��

)�
j z
� C 1 � 2˛j�

]
, if z > ��1 � 2˛��

�3�

where 0 < ˛ < 1, � > 0 and � is a positive constant defined as � D �2/��f�3/���1/��[1 �
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896 I. KOMUNJER

3˛ C 3˛2] � �2/��2[1 � 2˛]2g�1/2. The above quantity ��1 � 2˛�� corresponds to the ˛-quantile
of the random variable ε, i.e. F�1

ε ���1 � 2˛��� D ˛, where Fε�Ð� is the cdf of ε. Note that in
the special case ˛ D 1/2, the density fε�Ð� reduces to the standardized GPD density, fε�z� D
[�/��1/��21C1/��] exp[�jz/j�/2], for z 2 �, where  D [2�2/��1/��/�3/��]1/2.8

3. EXPECTED SHORTFALL

I now turn to the study of moments and moment related parameters of an APD random variable.
Expressions for non-centered moments of the standard APD random variable U can easily be
obtained from those of AEPD random variables.9 Table I summarizes all the moment results.

For example, the mean and variance of U are given by

E�U� D �2/��

�1/��
[1 � 2˛]υ�1/�

˛,� , �4�

var�U� D �3/���1/��[1 � 3˛ C 3˛2] � �2/��2[1 � 2˛]2

[�1/��]2 υ�2/�
˛,� �5�

Table I. Moments of a standard APD random variable U

� Symmetric case ˛ D 1/2 General case 0 < ˛ < 1

� > 0 E�U� D 0

var�U� D �3/��
�1/�� see Lemma 4

sk�U� D 0

ku�U� D �5/���1/��
[�3/��]2

� D 1 E�U� D 0 E�U� D �1 � 2˛� 1
2˛�1 � ˛�

(Laplace) var�U� D 2 var�U� D �1 � ˛�2 C ˛2

[2˛�1 � ˛�]2

sk�U� D 0 sk�U� D �1 � 2˛� 2�˛2 � ˛ C 1�
[�1 � ˛�2 C ˛2]3/2

ku�U� D 6 ku�U� D 3

{
3 �

[
2˛�1 � ˛�

�1 � ˛�2 C ˛2

]2
}

� D 2 E�U� D 0 E�U� D ��1 � 2˛�

√
�1 � ˛�2 C ˛2

p
2�˛�1 � ˛�

(Gaussian) var�U� D 1
2 var�U� D [�3� � 8��3˛2 � 3˛ C 1� C 2][�1 � ˛�2 C ˛2]

12�˛2�1 � ˛�2

sk�U� D 0 sk�U� D ��1 � 2˛�

p
54[�5� � 16��5˛2 � 5˛ C 1� � 4]

5[2 C �3� � 8��3˛2 � 3˛ C 1�]3/2

ku�U� D 3 ku�U� D 9[�15�2 C 16� � 192��5˛4 � 10˛3 C 10˛2 � 5˛ C 1�]
5[2 C �3� � 8��3˛2 � 3˛ C 1�]2

� 9[5�7� � 24��4˛2 � 4˛ C 1� � � C 12]
5[2 C �3� � 8��3˛2 � 3˛ C 1�]2

8 When ˛ D 1/2, � D �2/��/[4�3/���1/��]1/2 and  D �21C1/��2/��/�1/�� (see Nelson, 1991).

9 Note that U is also an AEPD random variable with shape �, location 0, scale 
 D
[

˛� C �1 � ˛��

2˛�/2�1 � ˛��/2

]1/�

and skewness

parameter � D
[

1 � ˛
˛

]1/2
(see Ayebo and Kozubowski, 2003).
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When ˛ D 1/2 and � > 0, the random variable U has the GPD density.10 In the asymmetric
Laplace case, obtained when 0 < ˛ < 1 and � D 1, the third and fourth centered moments U are
bounded: �2 � sk�U� � 2 and 6 � ku�U� � 9. Note that the bounded values for sk(U) and ku(U)
make the asymmetric Laplace distribution not well suited for financial applications, in which it is
often the case that the series of interest exhibit non-zero skewness and high values of kurtosis.
In the symmetric case ˛ D 1/2, the random variable U is standard Laplace and we obtain the
well-known results: E�U� D 0, var�U� D 2, sk�U� D 0 and ku�U� D 6. Figure 2 plots the first
four moments of a standard APD random variable U. Expressions for different centered moments
of X follow directly from equation (15).

I now turn to an important moment-related parameter of the standard APD random variable
U with shape parameters ˛, 0 < ˛ < 1, and �, � > 0, which is its ˛-expected shortfall, denoted
ES�˛�. For any probability level ˛, 0 < ˛ < 1, ES�˛� is defined as

ES�˛� D E[q � UjU � q] �6�

where q corresponds to the ˛-quantile of U, i.e. q D F�1�˛� and F�Ð� is the cdf of U. In other
words, ES�˛� is the expected value of the loss �q � U� conditional on this loss being positive,

Figure 2. Moments of a standard APD random variable: 0 < ˛ < 1, � D .7, 1, 2, 4

10 For the moments of a GPD random variable see Johnson et al. (1994, pp. 194–195) and Kotz et al. (2001, p. 219).
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i.e. conditional on U being lower than its ˛-quantile q. In the following proposition, I derive the
analytic expression for the ˛-expected shortfall of U.

Proposition 1 (Expected Shortfall): For any probability ˛ smaller than ˛, 0 < ˛ � ˛, the ˛-
expected shortfall of the standard APD random variable U, ES�˛�, is given by

ES�˛� D ˛

˛

˛

υ1/�
˛,�

�2/��

�1/��

1 � I

I�1
(

1 � ˛

˛
, 1/�

)
p

2
, 2/�


 C q �7�

where q is the ˛-quantile of U, q D �
[

˛�

υ˛,�

p
�

]1/�

[I�1�1 � ˛/˛, 1/��]1/� when ˛ � ˛, I�x, ��

is Pearson’s incomplete gamma function, I�x, �� D [���]�1
∫ x

p
�

0 t��1 exp��t�dt, I�1�y, �� is its
inverse and the constant υ˛,� is as in Definition 1. When ˛ > ˛ > 0, the ˛-expected shortfall of
U equals

ES�˛� D ˛

˛

˛

υ1/�
˛,�

�2/��

�1/��
� �1 � ˛�

˛

�1 � ˛�

υ1/�
˛,�

�2/��

�1/��
I

I�1
(

1 � 1 � ˛

1 � ˛
, 1/�

)
p

2
, 2/�

 C q �8�

where q is the ˛-quantile of U, q D
[

�1 � ˛��

υ˛,�

p
�

]1/�

[I�1�1 � �1 � ˛�/�1 � ˛�, 1/��]1/� when ˛ > ˛.

In Figures 3 and 4, I plot the ˛-expected shortfall of a standard APD random variable U with
different shape parameters ˛ and � as functions of the probability ˛. It is interesting to note that,
unlike the quantile function ˛ 7! q D F�1�˛�, the function ˛ 7! ES�˛� is not monotone on (0, 1).

Taking into account the location-scale property of the pdf fX�Ð�, the above results are eas-
ily transposable to any APD random variable X in equation (2). For any ˛, 0 < ˛ < 1, the
˛-expected shortfall ESX�˛� of X (defined as the expected value of the loss (qX � X) conditional
on X being lower than its ˛-quantile qX) equals ESX�˛� D 	ES�˛�. As previously, one can use
equations (7) and (8) to derive the expressions for the ˛-expected shortfall ESε�˛� of the standard-
ized APD random variable ε. We have ESε�˛� D 	εES�˛�, with 	ε D �1/��[�3/���1/��[1 �
3˛ C 3˛2] � �2/��2[1 � 2˛]2]�1/2υ1/�

˛, �.11

With the results of Proposition 1 in hand, I now proceed with the estimation of the ˛-expected
shortfall. To this end, I first establish the asymptotic properties of a maximum likelihood estimator
(MLE) for the APD parameters.

11 Note that we can write ε D �ε C 	εU, where the location of ε equals �ε D ��1 � 2˛�� and its scale is 	ε D
�1/��[�2/��]�1υ1/�

˛,��, with � as in Lemma 3.
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Figure 3. ˛-Expected shortfall ES�˛� (as a function of ˛) of a standard APD random variable U�˛ D 0.1, 0.2,
0.3, 0.5 and � D 0.7, 1, 2, 4)

4. SIMULATION AND MAXIMUM LIKELIHOOD ESTIMATION

In this section I discuss two problems: (1) how to simulate a random variable which is APD
distributed; and (2) how to estimate its true parameters. These problems often arise together in
Monte Carlo studies, for example.

Similar to the GPD case, random variates from the APD family can be obtained by direct
transformation of gamma variates (see Johnson, 1979). For given values of ˛ and �, 0 < ˛ < 1
and � > 0, the method for generating standard APD random variates is as follows: (1) generate
a gamma variate W with shape parameter 1/� and pdf fW�w� D �1/���1w1/��1 exp��w�;
(2) divide W by υ˛,� and raise to 1/� power, thus obtaining V D �W/υ˛,��1/�; (3) generate a
random sign variable S equal to C1 with probability (1 � ˛) and to �1 with probability ˛;
finally (4) let U D �˛V Ð ��S � 0� C �1 � ˛�V Ð ��S > 0�.12 It is straightforward to show that
such random variable U has density f�Ð� as defined in equation (1) and is hence standard APD
distributed.

Alternatively, having determined the expressions of the standard APD cdf F�Ð� and its inverse
F�1�Ð� in Lemmas 1 and 2, respectively, standard APD random variates can be generated by using

12 The function ��Ð� is the standard indicator function, i.e. for any event A, we have ��A� D 1 if A is true and
��A� D 0 otherwise.
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Figure 4. ˛-Expected shortfall ES�˛� (as a function of ˛) of a standard APD random variable U
(˛ D 0.1, 0.2, 0.3, 0.5 and � D 0.7, 1, 2, 4)

an inversion method. The inversion method can be summarized as follows: (1) generate a uniform
variate V in (0, 1); then (2) let U D F�1 �V�.13

I now turn to the problem of estimating the parameters of the APD density fX�Ð�, which is a
function of the asymmetry parameter ˛, 0 < ˛ < 1, the exponent �, � > 0, the location �, � 2 �,
and the scale 	, 	 > 0. Let ˇ denote the parameter vector, ˇ D �˛, �, �, 	�0. I follow the usual
convention and let ˇ0 be the true value of ˇ which needs to be estimated, ˇ0 D �˛0, �0, �0, 	0�0.
In this paper, I focus on the MLE for ˇ0, which I denote ǑT.

Recall that for any given ˛ and �, 0 < ˛ < 1 and � > 0, the APD random variable X in
equation (2) has density fX�Ð� given by fX�x� D 	�1f�	�1[x � �]�, for any x 2 �, where f�Ð�
is as defined in equation (1). Let then X1, . . . , XT be a random sample from an APD distribution
with density fX�Ð� parametrized by ˇ, and let x1, . . . , xT be the corresponding observations. The
APD normalized log-likelihood LT�ˇ�, LT�ˇ� D T�1 ∑T

tD1 ln fX�xtjˇ�, takes the form

LT�ˇ� D � ln 	 C 1
� ln υ˛,� � ln �1 C 1/��

13 Note that the first simulation method requires a gamma random number generator that accepts values of the shape
parameter greater than zero, while the inversion method only requires a uniform random number generator.
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� υ˛,�

	� T�1
T∑

tD1

[
jxt � �j�

˛� ��xt � �� C jxt � �j�
�1 � ˛�� ��xt > ��

]
, �9�

where υ˛,� is as in Definition 1, i.e., υ˛,� D 2˛��1 � ˛��

˛� C �1 � ˛�� .

The MLE ǑT is obtained as a solution to the problem maxˇ2B LT�ˇ� where B is a compact
parameter set, B ² �0, 1� ð �1/2, C1� ð � ð �Ł

C. The standard asymptotic normality results for
MLEs require that the objective function LT�ˇ� be twice continuously differentiable, which is
not the case here. There exist, however, asymptotic normality results for non-smooth functions
and I shall hereafter use the one proposed by Newey and McFadden (1994). The basic insight of
their approach is that the smoothness condition on the objective function LT�ˇ� can be replaced
by the smoothness of its limit, which in the standard maximum likelihood case corresponds to
the expectation L0�ˇ� D E[ln fX�Xtjˇ�], with the requirement that certain remainder terms are
small. Hence, the standard differentiability assumption is replaced by a ‘stochastic differentiability’
condition, which can then be used to show that the MLE ǑT is consistent and asymptotically
normal. This is the result of the following proposition.

Proposition 2 (APD MLE): Let X1, . . . , XT be a random sample from an APD distribution
with an unknown parameter ˇ0, ˇ0 2 B̊. Then, the MLE ǑT of ˇ0 is consistent and asymptotically
normal: p

T� ǑT � ˇ0�
d!N�0, J�ˇ0��1�

where J�ˇ� is the Fisher information matrix, J�ˇ� D E[�rˇ ln fX�Xtjˇ���rˇ ln fX�Xtjˇ��0]. More-
over :

JT� ǑT��1 p!J�ˇ0��1

where JT� ǑT� D T�1 ∑T
tD1�rˇ ln fX�xtj ǑT���rˇ ln fX�xtj ǑT��0. An analytic expression of the APD

score, rˇ ln fX�Xtjˇ�, is provided in Appendix A.

I study the small sample performance of the above MLE, ǑT, and of its covariance matrix
estimator, JT� ǑT��1, by conducting a Monte Carlo experiment. In particular, I study the small
sample bias of ǑT and the empirical coverage of its 95% confidence interval obtained from
JT� ǑT��1. For a given value of the true parameter ˇ0 D �˛0, �0, �0, 	0�0, I generate N D 10, 000
replications of the sequence x1, . . . , xT from the APD random variable X with density fX�Ð�.14

The parameter ˛0 is taken to be equal to 0.1, 0.25 and 0.5, while �0 takes the values 1, 2
and 4. The parameters �0 and 	0 are held fixed to 0 and 1, respectively, in all of the performed
replications. The sample size T is chosen to be 250 and 1000.15

For each replicate n, 1 � n � N, the true parameter ˇ0 is estimated by ǑT,n D � ǪT,n, O�T,n,
O�T,n, O	T,n�0. The maximization of the APD log-likelihood LT�ˇ� is done numerically by using
Matlab fmincon built-in optimization routine. The parameter space B is set to �0, 1� ð

14 The simulations are performed by using a Matlab gamma random number generator with default seed values, which
are obtained when the state of the Matlab pseudo-random number generator is set to zero.
15 Monte Carlo results for the sample sizes T D 500, 5000 are reported in Table IA available in the technical appendix.
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�1/2, 20� ð � ð �Ł
C.16 For each of the components of ǑT,n I compute the 95% confidence intervals,

using the covariance matrix estimator JT� ǑT,n��1 defined in Proposition 2. Table II reports the
mean value of the MLEs, ǑT D � ǪT, O�T, O�T, O	T�0 where ǑT D N�1 ∑N

nD1
ǑT,n, as well as the

empirical levels of the corresponding 95% confidence intervals, denoted �pT,˛, pT,�, pT,�, pT,	�0.
As expected, the mean values of the Monte Carlo MLEs converge with the sample size T to the
true value ˇ0 in all of the configurations studied in this experiment. Also, the empirical levels
of the 95% confidence intervals for ǪT,n, O�T,n, O�T,n and O	T,n converge with T to their nominal
coverage.

5. EMPIRICAL APPLICATION

I study four financial time series obtained from the Center for Research in Security Prices (CRSP)
during a period from 2 January 1990 to 19 May 2006. These consist of daily prices Pt of two
indices: S&P500 and NASDAQ; one individual security: Microsoft; and one exchange rate: British
pound (BP/USD) expressed in terms of the US dollar. For each series of prices, I construct the
series of log-returns, rt D 100 ln�Pt/Pt�1�, which I adjust to take into account events such as
stock splits on individual securities. The original data is split into two periods: an in-sample
period ranging from 2 January 1990 to 31 December 2002 (T observations), which is used for
estimation, and an out-of-sample period from 2 January 2003 to 19 May 2006 (R observations),
used for forecasting.

Table II. MLE sample means and empirical levels (T D 250 and 1000)

˛0 �0 T ˛T �T �T ϕT pT˛ pT� pT� pTϕ

0.1 1 250 0.099 1.021 0.003 0.979 90.97% 95.52% 84.58% 91.61%
0.25 1 250 0.250 1.019 0.004 0.997 91.90% 95.69% 85.30% 93.89%
0.5 1 250 0.500 1.016 �0.001 0.999 92.04% 95.20% 83.43% 94.12%
0.1 2 250 0.094 2.073 �0.033 0.930 91.98% 95.82% 89.99% 91.68%
0.25 2 250 0.248 2.081 �0.003 0.981 93.68% 96.69% 93.48% 93.09%
0.5 2 250 0.499 2.061 �0.004 0.982 94.84% 96.96% 95.00% 95.92%
0.1 4 250 0.085 4.338 �0.111 0.841 99.34% 96.82% 83.78% 99.13%
0.25 4 250 0.240 4.320 �0.032 0.947 92.87% 97.46% 92.29% 91.39%
0.5 4 250 0.499 4.345 �0.003 0.939 94.52% 97.12% 94.32% 96.80%
0.1 1 1000 0.100 1.005 0.001 0.996 94.15% 95.16% 91.52% 93.43%
0.25 1 1000 0.250 1.003 0.000 0.998 93.32% 94.96% 92.38% 94.01%
0.5 1 1000 0.500 1.002 �0.003 0.996 93.68% 95.00% 91.92% 95.08%
0.1 2 1000 0.099 2.014 �0.007 0.986 94.24% 95.83% 94.86% 94.17%
0.25 2 1000 0.250 2.020 0.001 0.997 94.29% 95.82% 94.67% 94.63%
0.5 2 1000 0.500 2.016 0.000 0.997 94.88% 95.08% 94.40% 95.00%
0.1 4 1000 0.097 4.066 �0.022 0.969 94.29% 95.82% 94.62% 94.26%
0.25 4 1000 0.249 4.059 �0.002 0.993 94.96% 96.16% 94.88% 94.64%
0.5 4 1000 0.499 4.062 �0.002 0.986 95.52% 96.24% 95.68% 96.72%

NOTE: Monte Carlo results are obtained with N D 10, 000 replications of the time series fXtg with t D 1, . . . , T, where
Xt’s are i.i.d. APD distributed with TDGP values: ˛0, �0, �0 D 0 and ϕ0 D 1.

16 Setting an upper bound on the shape parameter � (such as 20 in this Monte Carlo experiment) seemed to improve the
speed of convergence of the Matlab fmincon routine.
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5.1. In-Sample Analysis

For each series of returns rt, I estimate an APD-GARCH(1,1) model:

rt D � C 
tεt, �10�


2
t D ω0 C ω1
2

t�1 C ω2�rt�1 � ��2 �11�

where the innovations εt are assumed to be i.i.d. with APD density fε�Ð� as in equation (3) so
that E�εt� D 0 and E�ε2

t � D 1 (see Engle, 1982; Bollerslev, 1986). The parameter vector ω D
�ω0, ω1, ω2�0 satisfies ω0 > 0, 0 < ω1, ω2 < 1 and 0 < ω1 C ω2 < 1, which are the standard
stationarity and invertibility conditions. Given that the innovations εt are standardized, their density
is parametrized by only two parameters ˛, 0 < ˛ < 1, and �, � > 0.

Table III reports the first four unconditional moments of the returns rt. A quick glance at
Table III reveals that all series exhibit high values of kurtosis, ranging from 5.65 (BP/USD) to
138.58 (Microsoft). Skewness of the return series is generally negative.

There are two approaches to estimating the parameters of the APD-GARCH(1,1) model
(10)–(11). First is a ‘one-step’ method which constructs maximum likelihood estimates for the
parameters ˛ and � of the conditional APD density of the innovations along with the parameters
� and ω of the GARCH model. The MLE ǑT D � O�T, Oω0

T, ǪT, O�T�0 is obtained by maximizing
the APD log-likelihood LT�ˇ� D T�1 ∑T

tD1[� ln 
t C ln fε�εtjˇ�], with 
t and εt as defined by
the GARCH(1,1) model (10)–(11), and where fε�Ð� is as defined in equation (3). Sufficient
conditions for the consistency and asymptotic normality of the MLE in the APD-GARCH(1,1)
model (10)–(11) can be found in Straumann (2005).17

Second is a ‘two-step’ method in which the estimation is performed sequentially. In the first
step, ω and � are estimated by using a Gaussian quasi-maximum likelihood estimator (QMLE)
� Qω0

T, Q�T�0, which, under standard regularity conditions, is consistent and asymptotically normal
(see Bollerslev and Wooldridge, 1992). In the second step, estimated values QωT and Q�T are
used to construct the residuals Qεt D Q
�1

t �rt � Q�T�, with Q
2
t D Qω0T C Qω1T Q
2

t�1 C Qω2T�rt�1 � Q�T�2,
whose distribution parameters (under the APD assumption) are then consistently estimated by an
APD MLE � Q̨T, Q�T�0. While both approaches yield consistent estimates for the APD-GARCH(1,1)
parameters in (10)–(11), consistent standard errors are more difficult to obtain in the ‘two-step’
case, as they often require the use of subsampling or bootstrap methods (see Aas and Haff, 2006).

Table III. Descriptive statistics for the unconditional distribution of returns (and their residuals)

Mean Variance Skewness Kurtosis

Return series (residuals) rt εt rt εt rt εt rt εt T

S&P500 composite index 0.03 �0.02 1.11 1.01 �0.12 �0.40 6.81 5.22 3278
NASDAQ composite index 0.03 �0.03 2.61 1.01 �0.01 �0.50 8.55 4.61 3278
Microsoft 0.09 �0.01 7.14 1.00 �5.21 0.13 138.58 4.72 3272
BP/USD exchange rate 0.00 0.01 0.33 1.01 0.24 0.06 5.65 4.75 3263

NOTE: T is the number of observations.

17 Similar to the i.i.d. case, studied in detail in Section 4, these will involve checking the validity of various moment
conditions (for details, see Theorems 6.1.1 and 6.3.3 in Straumann, 2005).
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In this paper, I estimate the parameters �, ω, ˛ and � by using the ‘one-step’ approach.18

Table IV reports the parameter estimates � O�T, Oω0
T, ǪT, O�T�0 and their consistent standard errors

which are obtained from JT� ǑT��1, where JT� ǑT� D T�1 ∑T
tD1[rˇ�� ln O
t C ln fε�εtj ǑT��]

[rˇ�� ln O
t C ln fε�εtj ǑT��]0, and O
2
t D Oω0T C Oω1T O
2

t�1 C Oω2T�rt�1 � O�T�2 are the conditional vari-
ance estimates.

As can be seen from Table IV, estimated values ǪT of the asymmetry parameter ˛ range from
0.46 (Microsoft) to 0.59 (NASDAQ). A simple Wald test of the restriction ˛ D 1/2 shows that in
two cases out of four (NASDAQ and Microsoft), the value of ˛ is significantly different from 1/2
(with probability 95%). In other words, the residuals for those series are found to be asymmetric.
Another interesting finding is that in all four cases the estimated values O�T of the exponent � are
found to be significantly different from both 1 and 2, thus invalidating the assumptions that the
innovations εt are double-exponential (Laplace) or normally distributed. Note that this conclusion
holds even if we allow for asymmetry in the density of εt.

I use the above estimated values to construct the residuals Oεt D O
�1
t �rt � O�T�. Table III reports

the first four unconditional moments of Oεt’s (in addition to those of the returns rt). The
unconditional distribution of the residuals is skewed and leptokurtic, which tends to reject the
assumption that the residuals are GPD distributed. Moreover, one can reject the assumption that
the latter are Laplace distributed since in all four cases their kurtosis lies outside the interval
[6,9].19

Finally, using the results of Proposition 1, for any ˛, 0 < ˛ < 1, I am able to compute an estimate
ÊSε�˛� for the unconditional ˛-expected shortfall for each of the four series of innovations, which I
plot in Figure 5. For the purposes of risk management, the quantities of interest are the conditional
˛-expected shortfalls of returns rt, which by using the location-scale property of conditional
heteroskedasticity models such as GARCH(1,1) in (10)–(11), can be estimated at each point in

Table IV. APD MLE of the GARCH(1,1) model

Return series ω0 ω1 ω2 � ˛ �

S&P500 composite index 0.00 0.94 0.06 0.04 0.51 1.38
(0.00) (0.01) (0.01) (0.01) (0.01) (0.05)
[2.15] [87.52] [5.42] [3.10] [40.84] [30.19]

NASDAQ composite index 0.01 0.90 0.10 0.08 0.59 1.55
(0.00) (0.02) (0.02) (0.02) (0.01) (0.05)
[3.45] [58.90] [6.44] [4.68] [54.11] [31.07]

Microsoft 0.23 0.87 0.09 0.14 0.46 1.50
(0.07) (0.02) (0.02) (0.04) (0.01) (0.02)
[3.36] [35.56] [5.79] [3.81] [40.43] [70.24]

BP/USD exchange rate 0.00 0.93 0.07 �0.01 0.52 1.31
(0.00) (0.04) (0.03) (0.01) (0.02) (0.08)
[0.00] [21.01] [2.17] [�0.65] [25.11] [17.18]

NOTE: APD MLE for the GARCH(1,1) model: rt D � C 
tεt, where 
2
t D ω0 C ω1
2

t�1 C ω2�rt�1 � ��2 and εt is APD
distributed with E�εt� D 0 and var�εt� D 1. Consistent standard errors () and t statistics [] are in parentheses. Values of
the APD log-likelihood: S&P500, 1.310; NASDAQ, 1.625; Microsoft, 2.224, BP/USD, 0.777.

18 As a comparison, I report the estimation results from a ‘two-step’ approach in Tables IIA and IIIA of the technical
appendix.
19 Figure 1A in the technical appendix shows histograms of the residuals Oεt together with the fitted APD (standardized)
probability density with parameters ( ǪT, O�T) for each of the four series studied.
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time t using ÊSrt �˛� D O
tÊSε�˛�. Figure 6 plots ÊSrt (5%) as a function of time t for each of the
four series of returns rt during the period 12 March 1993–3 March 1995 (500 observations).

Alternatively, we can represent ÊSrt �˛� as a function of the probability ˛ but keeping a particular
time � fixed. For example, in Figure 7, I set the date � D 16 March 1993 (Tuesday) and plot
ÊSr� �˛� as a function of ˛ for each of the six series studied. Note that the time � can be chosen
arbitrarily within the sample.

In order to compare the riskiness of two different securities with returns r1t and r2t we need to
compare, at each point in time t, their conditional expected shortfalls ES�1�

rt
�˛� and ES�2�

rt
�˛�, for

Figure 5. In-sample estimates for the unconditional ˛-expected shortfall of εt : ÊSε�˛��0 < ˛ < 1�

Figure 6. In-sample estimates of the conditional 5% expected shortfalls of rt (12 March 1993–3 March 1995)
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Figure 7. In-sample estimates for the conditional ˛-expected shortfalls of rt, 0 < ˛ < 1 (obtained for Tuesday
16 March 1993)

all values of ˛, 0 < ˛ < 1. If for every ˛ the conditional ˛-expected shortfall of the first security is
smaller than the conditional ˛-expected shortfall of the second security, i.e., if ES�1�

rt
�˛� � ES�2�

rt
�˛�,

then any risk-averse investor with distorted perception of the true probabilities (optimistic or
pessimistic) prefers holding the first security to holding the second one (see Bassett et al., 2004).

Figure 8 plots the 95% confidence intervals for ÊSrt �˛�, 0 < ˛ < 1, for each of the four series
studied. Those confidence intervals were obtained by using the delta method in which rˇÊSrt �˛�
was replaced by a numerical gradient.20 The ith component ∂ÊSrt �˛�/∂ˇ�i� of the gradient was
computed over a grid of points Ǒ �i�

T C υs�i�
T , in which s�i�

T is the standard error of Ǒ �i�
T obtained from

JT� ǑT��1 and the step υ takes values �0.8, �0.6, . . . , 0.8.
As can be seen from Figure 8, the two stock indices (S&P500 and NASDAQ) and exchange rate

(BP/USD) clearly dominate the individual stock (Microsoft). However, there is no clear ranking
among the securities within those two groups in terms of their riskiness as measured by their
respective expected shortfalls.

5.2. Out-of-Sample Analysis

I now turn to the out-of-sample evaluation of the ˛-expected shortfall one-step-ahead forecasts
obtained from the APD-GARCH(1,1) model (10)–(11). I adopt a fixed forecasting scheme, which
means that all forecasts depend on the same set of parameters estimated in-sample, i.e., over the
first T observations. In other words, at each out-of-sample date �, T C 1 � � � T C R, I compute

20 An alternative method of obtaining the confidence intervals for the shortfall estimate ÊSrt �˛� is via Monte Carlo
simulations. For example, the 95% confidence interval can be computed as the empirical 95% coverage interval for
ÊSrt �˛� obtained in the Monte Carlo simulations of the parameter � O�T, Oω0

T, ǪT, O�T�0 in which the latter is assumed to be
normally distributed with mean and covariance matrix as estimated via APD-GARCH MLE (see Table IV). Table IVA in
the technical appendix compares the standard errors obtained using the delta method with those using the Monte Carlo
simulation approach.
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Figure 8. 95% confidence intervals for the in-sample estimates of the conditional ˛-expected shortfalls of
rt, 1 < ˛ < 1 (obtained for Tuesday 16 March 1993)

the one-step-ahead ES (1%), ES (5%) and ES (10%) forecasts recursively. Note that ÊSε�˛� remains
constant over the out-of-sample period as it only depends on the parameter estimates ǑT obtained
in-sample.

In addition to the ES (1%), ES (5%) and ES (10%) forecasts from the APD-GARCH(1,1)
model (10)–(11), I also consider the ES (1%), ES (5%) and ES (10%) forecasts originated
from the following two models: an asymmetric Student-t GARCH(1,1) model and a GPD-
EGARCH(1,1) model.

The asymmetric (skewed) Student-t GARCH(1,1) specification is similar to the one in (10)–(11)
except that the innovations εt are now assumed to be i.i.d. with an asymmetric (skewed) Student-t
distribution whose density

fε�z� D


2

� C 1/� bc

[
1 C ���bz C a��2

� � 2

]���C1�/2

, if z � �a/b,

2
� C 1/� bc

[
1 C ��bz C a�/��2

� � 2

]���C1�/2

, if z ½ �a/b

�12�

is parametrized by �, 2 < � < 1, and �, � > 0, and where the constants a, b and c are given by

a D ��� � 1�/2�
p

� � 2p
���/2�

�� � 1/��, b2 D ��2 C 1/�2 � 1� � a2 and c D ��� C 1�/2�√
��� � 2���/2�

(see

Hansen, 1994; Fernandez and Steel, 1998; Giot and Laurent, 2004; Patton, 2004; Kuester et al.,
2006; Paolella, 2006).21 The innovations density in equation (12) is standardized so E�εt� D 0
and E�ε2

t � D 1. Table V reports the in-sample parameter estimates of the skewed Student-t
GARCH(1,1) model.

21 Note that the expression of Hansen’s (1994) skewed Student-t density follows from equation (12) by a simple
reparametrization which sets the degrees of freedom parameter � D � and the skewness parameter � D ��2 � 1�/��2 C 1�.
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Table V. Skewed Student-t MLE of the GARCH(1,1) model

Return series ω0 ω1 ω2 � ln��� �

S&P500 composite index 0.00 0.94 0.06 0.05 �0.02 6.69
(0.00) (0.01) (0.01) (0.01) (0.02) (0.63)
[1.94] [106.86] [6.25] [3.85] [�1.25] [10.68]

NASDAQ composite index 0.01 0.91 0.09 0.08 �0.17 9.63
(0.00) (0.01) (0.01) (0.02) (0.02) (1.15)
[2.63] [69.42] [6.81] [5.21] [�7.31] [8.38]

Microsoft 0.23 0.87 0.09 0.15 0.07 8.18
(0.07) (0.02) (0.02) (0.04) (0.02) (1.00)
[3.46] [35.83] [5.01] [3.59] [3.17] [8.20]

BP/USD exchange rate 0.00 0.94 0.06 �0.01 0.01 4.90
(0.00) (0.01) (0.01) (0.01) (0.02) (0.02)
[1.84] [80.67] [5.31] [�0.94] [0.33] [266.67]

NOTE: Skewed Student-t MLE for the GARCH(1,1) model: rt D � C 
tεt, where 
2
t D ω0 C ω1
2

t�1 C ω2�rt�1 � ��2

and εt is skew Student-t distributed with E�εt� D 0 and var�εt� D 1. Consistent standard errors () and t statistics [] are in
parentheses. Values of the skew Student-t log-likelihood: S&P500, 1.308; NASDAQ, 1.623; Microsoft, 2.220, BP/USD,
0.770.

The second competing model that I consider is a GPD-EGARCH(1,1) model:

rt D � C 
tεt, �13�

ln 
2
t D ω0 C ω1 ln 
2

t�1 C ω2�rt�1 � �� C ω3jrt�1 � �j �14�

where εt is assumed to be i.i.d. with GPD density that is standardized (see Nelson, 1991). Note that
a GPD density with shape parameter � is a special case of an APD density with same shape � but
whose asymmetry parameter ˛ has been set to ˛ D 1/2. Though the distribution of the innovations
εt in the GPD-EGARCH(1,1) model is symmetric, the term ω2�rt�1 � �� C ω3jrt�1 � �j in the
EGARCH equation (14) allows the conditional variance 
2

t to respond asymmetrically to increases
and decreases in returns rt�1. Table VI reports the in-sample parameter estimates of the GPD-
EGARCH(1,1) model.

In order to evaluate the accuracy of the expected shortfall forecasts, I use a test similar to that
proposed by McNeil and Frey (2000). Let qt�˛� denote the conditional ˛-quantile of the returns rt,
which in the case of conditional heteroskedasticity models such as the one in (10)–(11) can also
be written as qt�˛� D � C 
tqε�˛�, where qε�˛� is the unconditional ˛-quantile of the innovation
term εt. The test for accuracy of forecasts ÊSrt �˛� is then based on the variable

Rt�˛� D [qt�˛� � rt] � ESrt �˛�


t

which in the models considered here reduces to

Rt�˛� D �qε�˛� � εt� � ESε�˛�

Under correct specification, the variables Rt�˛� are i.i.d. and such that E[Rt�˛�jεt � qε�˛�] D 0.
For each of the models studied, I construct the ˛-quantile and ˛-expected shortfall forecasts,

denoted Oqε�˛� and ÊSε�˛�, respectively, using the analytic expressions for qε�˛� and ESε�˛�, in

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 891–921 (2007)
DOI: 10.1002/jae



ASYMMETRIC POWER DISTRIBUTION 909

Table VI. GPD MLE of the EGARCH(1,1) model

Return series ω0 ω1 ω2 ω3 � �

S&P500 composite index �0.09 0.94 �0.10 0.11 0.03 1.40
(0.01) (0.01) (0.01) (0.02) (0.01) (0.03)

[�6.61] [109.80] [�7.02] [6.93] [2.78] [53.48]
NASDAQ composite index �0.09 0.92 �0.04 0.11 0.10 1.50

(0.01) (0.01) (0.01) (0.02) (0.02) (0.05)
[�6.42] [76.14] [�4.76] [6.68] [5.53] [29.30]

Microsoft 0.04 0.90 �0.03 0.07 0.07 1.52
(0.02) (0.02) (0.01) (0.01) (0.02) (0.04)
[2.38] [40.05] [�4.52] [4.71] [3.76] [42.72]

BP/USD exchange rate �0.16 0.94 0.00 0.20 0.00 1.31
(0.01) (0.01) (0.02) (0.02) (0.01) (0.04)

[�10.75] [150.01] [0.14] [11.33] [�0.48] [32.10]

NOTE: GPD MLE for the EGARCH(1,1) model: rt D � C 
tεt, where ln 
2
t D ω0 C ω1 ln 
2

t�1 C ω2�rt�1 � �� C
ω3jrt�1 � �j, and εt is GPD distributed with E�εt� D 0, and var�εt� D 1. Consistent standard errors () and t statistics
[] are in parentheses. Values of the GPD log-likelihood: S&P500, 1.304; NASDAQ, 1.640; Microsoft, 2.222, BP/USD,
0.774.

which the density parameters are set to be equal to the previously obtained MLEs (see Tables IV, V
and VI).22 In the case of the APD-GARCH(1,1) and GPD-EGARCH(1,1) models qε�˛� and ESε�˛�
are computed directly using the results of Lemma 2 and Proposition 1, respectively. In the case
of the asymmetric (skewed) Student-t GARCH(1,1) model, the analytic expression for qε�˛�
can be found in Patton (2004). Using straightforward algebra, I further show that, for quantiles
qε�˛� � �a/b, the ˛-expected shortfall of a (standardized) asymmetric (skewed) Student-t random
variable with density defined in equation (12), equals

ESε�˛� D qε�˛� C 2

˛��2 C 1�

 c� � 2

�� � 1

[
1 C ���bz C a��2

� � 2

]����1�/2

C aF����bz C a��


where F��Ð� is the cdf of a (standardized) Student-t random variable with � degrees of freedom.
With Oqε�˛� and ÊSε�˛� in hand, I then construct the out-of-sample residuals ORt�˛� D � Oqε�˛� � Oεt� �
ÊSε�˛�, and their out-of-sample conditional average Rt�˛� D R�1 ∑TCR

�DTC1
ORt�˛���Oεt � Oqε�˛��.

In Table VII I report the values of Rt�˛�, ÊSε�˛� and of the empirical coverages OP�˛� D
R�1 ∑TCR

�DTC1 ��Oεt � Oqε�˛�� for each of the three forecasting models employed and each of the four
series studied. As can be seen from Table VII, the out-of-sample empirical findings are mixed. The
standard t-test rejects (at the 5% level) the null hypothesis H0 : E[Rt�˛�jεt � qε�˛�] D 0 in favor
of the alternative H1 : E[Rt�˛�jεt � qε�˛�] 6D 0 twice in the case of APD-GARCH(1,1) ES (1%)
forecasts (NASDAQ and BP/USD) and three times in the case of skewed Student-t GARCH(1,1)
ES (1%) forecasts (S&P500, NASDAQ and BP/USD). In all other cases, the null hypothesis of
the correct specification of the tail residuals cannot be rejected.

It is worth pointing out that this expected shortfall evaluation procedure à la McNeil and Frey
(2000) is developed along similar lines to the binomial test of conditional quantile forecasts.

22 Figure 2A in the technical appendix plots the out-of-sample ES (5%) forecasts for S&P500 daily returns obtained from
the three competing models.
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Table VII. Out-of-Sample ES forecast evaluation

Return series R(1%) R(5%) R(10%) ESε(1%) ESε(5%) ESε(10%) P(1%) P(5%) P(10%)

APD-GARCH�1, 1�
S&P500 �0.26 �0.13 �0.16 0.51 0.57 0.60 0.50% 4.70% 12.30%

[�1.18] [�0.39] [�0.39]
NASDAQ �0.29 �0.22 �0.20 0.51 0.58 0.63 0.30% 4.50% 12.00%

[�4.20] [�0.70] [�0.53]
Microsoft 1.88 0.38 0.19 0.43 0.49 0.52 0.60% 3.00% 6.00%

[0.97] [0.26] [0.17]
BP/USD �0.45 �0.13 �0.11 0.52 0.57 0.60 0.40% 4.50% 10.10%

[�6.85] [�0.46] [�0.27]
Skew-t-GARCH�1.1�
S&P500 �0.44 �0.19 �0.16 0.69 0.62 0.61 0.50% 5.40% 13.20%

[�1.96] [�0.52] [�0.38]
NASDAQ �0.44 �0.29 �0.24 0.71 0.67 0.68 0.30% 4.70% 12.30%

[�5.08] [�0.91] [�0.62]
Microsoft 1.71 0.36 0.13 0.56 0.53 0.54 0.60% 3.00% 6.50%

[0.90] [0.25] [0.12]
BP/USD �0.83 �0.23 �0.16 0.85 0.68 0.64 0.20% 4.60% 10.60%

[�40.13] [�0.81] [�0.41]
GPD-EGARCH�1, 1�
S&P500 �0.21 �0.21 �0.18 0.49 0.55 0.58 0.50% 4.40% 10.70%

[�0.95] [�0.61] [�0.47]
NASDAQ �0.17 �0.10 �0.08 0.46 0.52 0.56 0.80% 5.80% 13.50%

[�0.88] [�0.27] [�0.19]
Microsoft 1.30 0.38 0.10 0.45 0.52 0.56 0.70% 2.50% 5.70%

[0.69] [0.26] [0.09]
BP/USD �0.24 �0.11 �0.06 0.53 0.58 0.61 1.00% 7.90% 16.30%

[�1.34] [�0.28] [�0.13]

NOTE: t statistics [] are in parentheses.

Hence, it is subject to the same drawbacks as the binomial test: (1) it assumes that under the
null hypothesis the events ��Oεt � Oqε�˛�� are i.i.d. while empirical evidence shows they exhibit
clustering; and (2) perhaps even more importantly, it does not take into account the estimation
error in conditional quantile and expected shortfall forecasts. In the case of conditional quantile
forecasts, this results in a test which generally has a limited ability to distinguish among alternative
hypotheses and thus has low power, even in moderately large samples, as shown by Kupiec (1995)
and Lopez (1997).

It is interesting to note, however, that the rejections of the null appear to occur when the
unconditional expected shortfall estimates ESε�˛� are high, and hence potentially overestimated.
For example, in the case of ES (1%) forecasts for NASDAQ daily returns, both the APD and
asymmetric (skewed) Student-t assumption lead to values of ESε�1%� which are higher (0.51
and 0.71, respectively) than under the GPD assumption (0.46). An overestimation in ESε�˛�
automatically leads to negative values of Rt�˛� and the changes in estimated conditional variances
O
2

t do not seem to be able to counter this effect. Another interesting finding is that for low values
of probabilities ˛ (such as 1%, 5% and 10% studied here), low and potentially underestimated
values of ESε�˛� apparently lead to fewer rejections of the null hypothesis. For example, in the
case of ES (1%) forecasts for Microsoft daily returns, all three specifications produce values of
Rt�˛� that are positive (1.88, 1.71 and 1.30, respectively), yet none is found to be significantly
different from zero at the 5% level.
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6. CONCLUSION

This paper introduces a new family of probability distributions—called the asymmetric power
distribution (APD)—that generalizes the GPD distributions to cases where the density function
is asymmetric. I derive analytic expressions for the quantiles and expected shortfalls of APD
distributed random variables, show how to simulate APD variates, and finally how to estimate—via
maximum likelihood—its four parameters ˛, �, � and 	. Moreover, I propose a consistent estimator
of the covariance matrix of the MLE based on the APD score, whose analytic expression is derived
in the paper. The small sample properties of the MLE and its covariance matrix estimator are
studied through a Monte Carlo experiment.

I further apply my theoretical result to the conditional expected shortfall estimation and
forecasting. Using daily returns on four financial market series, I found their innovations to be
asymmetric—with asymmetry parameter ˛ significantly different from one half—and with the
exponent parameter � comprised within [1.31, 1.55] (and significantly different from 1 and 2, which
invalidates Laplace and Gaussian assumptions). Moreover, by computing the 95% confidence
intervals for the conditional 5% expected shortfalls of the daily returns, I find that the two stock
indices (S&P500 and NASDAQ) and the BP/USD exchange rate clearly dominate (in-sample) the
individual stock (Microsoft) in terms of their riskiness.

In an out-of-sample forecasting exercise, I compare the performance of three competing models:
APD-GARCH (1,1), skewed Student-t GARCH (1,1) and GPD-EGARCH (1,1). The out-of-sample
empirical coverage results suggest that the APD-GARCH (1,1) model outperforms its competitors
at forecasting the conditional 5% and 10% value-at-risk. While all three models perform well at
forecasting the conditional 5% and 10% expected shortfalls, GPD-EGARCH (1,1) dominates the
other two models in the case of the conditional 1% expected shortfall forecasts. This interesting
finding seems to suggest that—at least in the case of (extreme) tails—modeling the asymmetry
in the conditional variance is perhaps even more important than in the unconditional distribution
of the innovations, when forecasting the expected shortfall out-of-sample.

APPENDIX A: PROPERTIES OF AN APD RANDOM VARIABLE

Lemma 1 (APD cdf) For given values of ˛ and �, 0 < ˛ < 1 and � > 0, let U be a standard
APD random variable with pdf f�Ð� as defined in equation (1). For any u 2 �, the cumulative
distribution function F�Ð� of U then equals

F�u� D


˛

[
1 � I

(
υ˛,�

˛�

p
�juj�, 1/�

)]
, if u � 0,

1 � �1 � ˛�

[
1 � I

(
υ˛,�

�1 � ˛��

p
�juj�, 1/�

)]
, if u > 0

where υ˛,� is as in Definition 1 and I�x, �� is Pearson’s incomplete gamma function, I�x, �� D
[���]�1

∫ x
p

�
0 t��1 exp��t� dt.23

23 Note that in the special case of an asymmetric Laplace distribution �� D 1�, the cdf F above simplifies to F�u� D
˛ exp[2�1 � ˛�u], if u � 0, and 1 � �1 � ˛� exp��2˛u�, if u > 0 (see, e.g., Johnson et al., 1994, p. 193).
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Lemma 2 (APD quantiles): For any probability v, v 2 �0, 1�, the v-quantile of the standard APD
random variable U, F�1�v�, equals

F�1�v� D


�
[

˛�

υ˛,�

p
�

]1/�

Ð [I�1
(
1 � v

˛, 1/�
)]1/�

, if v � ˛,[
�1 � ˛��

υ˛,�

p
�

]1/�

Ð
[
I�1

(
1 � 1 � v

1 � ˛, 1/�
)]1/�

, if v > ˛

where υ˛,� is as in Definition 1 and I�1�y, �� is the inverse of the Pearson’s incomplete gamma
function, i.e., x D I�1�y, �� is equivalent to y D I�x, ��. In particular, F�1�˛� D 0.24

Lemma 3 (Standardized a-Quantile density): Let ε be an APD random variable which is
standardized, i.e., E[ε] D 0 and var�ε� D 1. Then the density of ε, denoted fε�Ð�, is given by

fε�z� D


�
�

�2/��
�1/��2 exp

[
�
(

�2/��
˛�1/��

)�
j z
� C 1 � 2˛j�

]
, if z � ��1 � 2˛��,

�
�

�2/��
�1/��2 exp

[
�
(

�2/��
�1 � ˛��1/��

)�
j z
� C 1 � 2˛j�

]
, if z > ��1 � 2˛��

where 0 < ˛ < 1, � > 0 and � is a positive constant defined as � D �2/��f�3/���1/��[1 �
3˛ C 3˛2] � �2/��2[1 � 2˛]2g�1/2.

Lemma 4 (APD moments): For any r 2 � we have

E�Ur� D ��1 C r�/��

�1/��

�1 � ˛�1Cr C ��1�r˛1Cr

υr/�
˛,�

�15�

Lemma 5 (APD score): If X is a four-parameter APD random variable in (2) with den-
sity fX�x� D 	�1f�	�1[x � �]�, where f�Ð� is as defined in equation (1), then its score, st D
r ln fX�Xt�, is given by

st,˛ D ∂

∂˛
ln fX�Xt� D ∂υ˛,�

∂˛

{
1

�υ˛,�
� jXt � �j�

	�

[
1

˛� ��Xt � �� C 1

�1 � ˛�� ��Xt > ��

]}

C �υ˛,�
jXt � �j�

	�

[
1

˛�C1 ��Xt � �� � 1

�1 � ˛��C1 ��Xt > ��

]

24 As previously, in the asymmetric Laplace case, the quantile function F�1 simplifies to F�1�v� D �[2�1 � ˛�]�1 ln�˛/v�,
if v � ˛, and �2˛��1 ln��1 � ˛�/�1 � v��, if v > ˛.
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st,� D ∂

∂�
ln fX�Xt� D 1

�2

[
� ln υ˛,� C �

υ˛,�

∂υ˛,�

∂�
C �1 C 1/��

]
�
[

∂υ˛,�

∂�
C υ˛,� ln

jXt � �j
	

] jXt � �j�
	�

[
1

˛� ��Xt � �� C 1

�1 � ˛�� ��Xt > ��

]
C υ˛,�

jXt � �j�
	�

[
ln ˛

˛� ��Xt � �� C ln�1 � ˛�

�1 � ˛�� ��Xt > ��

]
st,� D ∂

∂�
ln fX�Xt� D �

jXt � �j��I

	�

[
υ˛,�

�1 � ˛�� � 2 Ð ��Xt � ��

]

st,	 D ∂

∂	
ln fX�Xt� D � 1

	

{
1 � �υ˛,�

jXt � �j�
	�

[
1

˛� ��Xt � �� C 1

�1 � ˛�� ��Xt > ��

]}
,

where υ˛,� D 2˛��1 � ˛��

˛� C �1 � ˛�� ,
∂υ˛,�
∂˛ D �υ˛,�

[
�1 � 2˛�
˛�1 � ˛� � ˛��1 � �1 � ˛���1

˛� C �1 � ˛��

]
,

∂υ˛,�
∂� D υ˛,�{

ln[˛�1 � ˛�] � ˛� ln ˛ C �1 � ˛�� ln�1 � ˛�
˛� C �1 � ˛��

}
and �1 C 1/�� D 0�1 C 1/��

�1 C 1/�� is a digamma

function.

APPENDIX B: PROOFS

Proof of Proposition 1: For a given probability ˛, 0 < ˛ � ˛, let q denote the ˛-quantile of U,
i.e., q D F�1�˛�. We then have, for any u 2 �, Pr�U � ujU � q� D Pr�U � u, U � q�/Pr�U � q�,
so that Pr�U � ujU � q� D 1, if u ½ q and Pr�U � ujU � q� D F�u�/˛, otherwise. Hence, the
˛-expected shortfall of U equals

E�q � UjU � q� D 1
˛

∫ q

�1
�q � u�f�u�du �16�

Recall that ˛ � ˛ so that q D F�1�˛� � F�1�˛� D 0. In that case equation (16) becomes

E�q � UjU � q� D ˛�1υ1/�
˛,�

�1 C 1/��

∫ q

�1
�q � u� exp

[
�υ˛,�

˛� ��u��

]
du

D ˛�1υ1/�
˛,�

�1 C 1/��

∫ C1

0
v exp

[
�υ˛,�

˛� �v � q��
]

dv

where I have set v D q � u. Note that we have u � q � 0 so that v ½ 0 ½ q. Now let

s D υ˛,�

˛� �v � q�� so that v D
[

˛�

υ˛,�
s

]1/�

C q and dv D 1
�

[
˛�

υ˛,�

]1/�

s1/��1ds. The integral above

becomes E�q � UjU � q� D 1
˛

˛
��1 C 1/��

∫ C1
b

(
˛

υ1/�
˛,�

s1/� C q

)
s1/��1 exp��s�ds, where b D
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υ˛,�

˛� ��q��. Hence

E�q � UjU � q� D ˛�1˛

��1 C 1/��

[
˛

υ1/�
˛,�

∫ C1

b
s2/��1 exp��s�ds C q

∫ C1

b
s1/��1 exp��s�ds

]

D ˛

˛

{
˛

υ1/�
˛,�

�2/��

�1/��

[
1 � I

(
υ˛,�

˛� ��q��
√

�/2, 2/�

)]
C q

[
1 � I

(
υ˛,�

˛� ��q��
p

�, 1/�

)]}

Recall from Lemma 2 that q D �
[

˛�

υ˛,�

p
�

]1/� [
I�1

(
1 � ˛

˛, 1/�
)]1/�

so that E�q � UjU �

q� D ˛
˛

˛
υ1/�

˛,�

�2/��
�1/��

[
1 � I

(
I�1

(
1 � ˛

˛, 1/�
)

/
p

2, 2/�
)]

C q, which shows that (7) holds. In the

case where ˛ > ˛ > 0 we have q > 0 and similar computations to that above show that in this
case

E�q � UjU � q� D ˛

˛

˛

υ1/�
˛,�

�2/��

�1/��
� �1 � ˛�

˛

�1 � ˛�

υ1/�
˛,�

ð

�2/��

�1/��
I

(
I�1

(
1 � 1 � ˛

1 � ˛
, 1/�

)
/
p

2, 2/�

)
C q

where now q D
[

�1 � ˛��

υ˛,�

p
�

]1/� [
I�1

(
1 � 1 � ˛

1 � ˛, 1/�
)]1/�

from Lemma 2. This completes the

proof of Proposition 1.

Proof of Proposition 2: I start by showing that ǑT, obtained as a solution to the problem
maxˇ2B LT�ˇ� with LT�ˇ� as defined in equation (9), is a consistent estimate of ˇ0. In order to
do so, I use the MLE consistency result by Newey and McFadden (1994, p. 2131) and show
that all the assumptions of their Theorem 2.5 hold. I first need to show that the identifica-
tion condition (i) of Theorem 2.5 holds, i.e. if ˇ 6D ˇ0 then fX�Ðjˇ� 6D fX�Ðjˇ0�. I prove the
converse of the above implication: consider the case where fX�Ðjˇ� D fX�Ðjˇ0�. This implies
that these two APD densities have modes that coincide; since the APD density is unimodal
we necessarily have � D �0. Further, note that fX�Ðjˇ� D fX�Ðjˇ0� implies FX�Ðjˇ� D FX�Ðjˇ0�
and so ˛ D FX��jˇ� D FX��0jˇ0� D ˛0. In order to show that � D �0, consider the equal-
ity ˛�1fX��jˇ�ESX�˛� D ˛�1

0 fX��0jˇ�ESX�˛0�; using the results of Proposition 1, we have
that ˛�1fX��jˇ�ESX�˛� D ��2/��[�1/��]�2. The function � 7! ��2/��[�1/��]�2 is strictly
monotone decreasing on �1/2, C1�, hence ��2/��[�1/��]�2 D �0�2/�0�[�1/�0�]�2 implies
� D �0. Finally, comparing the values that the APD densities achieve at their mode we have that
fX��jˇ� D fX��0jˇ0�, together with � D �0, ˛ D ˛0 and � D �0, implies 	 D 	0. Hence ˇ D ˇ0

which shows identification. The compactness condition (ii) of Theorem 2.5 is ensured by consid-
ering a compact parameter set B. The continuity condition (iii) of Theorem 2.5 is trivially verified
since lnfX�Xtjˇ� is continuous at each ˇ 2 B with probability one (indeed, discontinuity arises
only when � D Xt which is of measure zero). Finally, the boundednes condition (iv) of Theorem
2.5 requires that E[supˇ2Bj ln fX�Xtjˇ�j] < 1. Recall that
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ln fX�Xtjˇ� D � ln 	 C ln
υ1/�

˛,�

�1 C 1/��
� υ˛,�

	� Ð
[

jXt � �j�
˛� ��Xt � �� C jXt � �j�

�1 � ˛�� ��xt > ��

]
,

Note that, for every ˇ 2 B, we have

j ln fX�Xtjˇ�j � j ln 	j C
∣∣∣∣∣ln υ1/�

˛,�

�1 C 1/��

∣∣∣∣∣ C υ˛,�
[˛� C �1 � ˛��]

˛��1 � ˛��

∣∣∣∣Xt � �

	

∣∣∣∣�

� j ln 	j C
∣∣∣∣∣ln υ1/�

˛,�

�1 C 1/��

∣∣∣∣∣ C 2	��n�[jXtj� C j�j�], �17�

where n� is a positive constant such that �a C b�� � n��a� C b�� for all a, b > 0. Hence E[supˇ2Bj
ln fX�Xtjˇ�j] � C1 C C2 max f1, E[jXtj�g, where C1 D supˇ2Bfj ln 	j C

∣∣∣∣∣ln υ1/�
˛,�

�1 C 1/��

∣∣∣∣∣ C
2	��n�j�j�g, C2 D supˇεBf2	��n�g and � D supˇεB�. By compactness of B we have C1 <
1, C2 < 1, and � < 1; it remains to be shown that E[jXtj�] < 1. From Equation (2.7) in

Ayebo and Kozubowski (2003), a simple change of variable � D 0, 
 D
[

˛� C �1 � ˛��

2˛�/2�1 � ˛��/2

]1/�

and

� D
[

1 � ˛
˛

]1/2
shows that the �-moment of the absolute value of a standard APD random variable

Ut D �Xt � �0�/	0 with parameters �˛0, �0� equals E�jUtj�� D ��1 C ��/�0�
�1/�0� υ��/�0

˛0,�0
[˛1C�

0 C �1 �
˛0�1C�]. We therefore get that

E�jUtj�� � ��1 C ��/�0�

�1/�0�
2υ��/�0

˛0,�0
, �18�

and E�jXtj�� � n�

[
j�0j� C 	�

0
��1 C ��/�0�

�1/�0� 2υ��/�0
˛0,�0

]
< 1, as desired. Applying the result of

Theorem 2.5 in Newey and McFadden (1994, p 2131) I thus show that ǑT is consistent, i.e.
ǑT

p!ˇ0.
I now show that ǑT is asymptotically normal with asymptotic covariance matrix J�ˇ0��1, where

J�ˇ0� D E[[rˇ ln fX�Xtjˇ0�][rˇ ln fX�Xtjˇ0�]0]. In order to do so, I use the asymptotic normal-
ity result for the MLE contained in Theorem 7.1 of Newey and McFadden (1994, p. 2185).
It is important to note that the main difficulty in applying the existing asymptotic normality
results lies in the fact that the objective function here is not everywhere differentiable. The first
condition to be satisfied for the asymptotic normality to hold is the maximum condition (i):
ˇ0 D arg maxˇ2B E[ln fX�Xtjˇ�]. This condition is trivially satisfied by assuming that X1, . . . , XT

are i.i.d. from the APD distribution with parameter ˇ0 (i.e., there is no distributional misspec-
ification). The interior condition (ii) of Theorem 7.1 is equivalent to the assumption ˇ0 2 B̊
(interior of B). The twice differentiability condition (iii) also holds with the 4 ð 4 Hessian matrix
of second derivatives, H�ˇ0� D E[ˇˇ ln fX�Xtjˇ0�], being nonsingular. I checked the nonsin-
gularity condition by first computing analytic expressions of the elements of ˇˇ ln fX�xjˇ0�,
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and then numerically integrating them with respect to the four-parameter APD probability den-
sity with the true parameter ˇ0. My numerical computations of H�ˇ0� have shown that for
ˇ0 2 B D [0.01, 0.99] ð [0.5, 5] ð [�10, 10] ð [0.1, 10], we have det�H� 6D 0. Due to the length
of analytic expressions for different elements of H�ˇ0� I choose not to report them here. I now show

that condition (iv) of Theorem 7.1 is satisfied, i.e., that
p

TDT�ˇ0�
d!N�0, J�ˇ0��, where DT�ˇ0�

is a gradient of LT�ˇ� at ˇ0, i.e., DT�ˇ0� D T�1 ∑T
tD1 rˇ ln fX�xtjˇ0�. For that, I use a standard

Lindeberg–Levy central limit Theorem (CLT) for i.i.d. sequences (see, e.g., Theorem 5.2 in White,
2001, p. 114) for which I need to show that all the elements of the asymptotic covariance matrix
J�ˇ0� are finite. Note that we have j[rˇ ln fX�Xtjˇ0�][rˇ ln fX�Xtjˇ0�]0j D j ∂

∂ˇi0

ln fX�Xtjˇ0�j Ð
j ∂
∂ˇj0

ln fX�Xtjˇ0�j, where the indices 1 � i0, j0 � 4 are such that max1�i,j�4 j ∂
∂ˇi

ln fX�Xtjˇ0� Ð
∂

∂ˇj
ln fX�Xtjˇ0�j D j ∂

∂ˇi0

ln fX�Xtjˇ0� Ð ∂
∂ˇj0

ln fX�Xtjˇ0�j. Hence, by norm equivalence we

know that there exist a positive constant c, such that j[rˇ ln fX�Xtjˇ0�][rˇ ln fX�Xtjˇ0�]0j �
c2 Ð jrˇ ln fX�Xtjˇ0�j2. Then, all the elements of J�ˇ0� are finite if E

[
j ∂
∂ˇi

ln fX�Xtjˇ0�j2
]

< 1

for 1 � i � 4: based on the results from Lemma 5, we have j ∂
∂˛ ln fX�Xtjˇ0�j2 � 4

[
∂υ˛0,�0

∂˛

]2

ð[
1

�2
0υ2

˛0,�0

C jXt � �0j2�0

	2�0
0

4
υ2

˛0,�0

]
C 4�2

0υ2
˛0,�0

jXt � �0j2�0

	2�0
0

4
˛2

0�1 � ˛0�2υ2
˛0,�0

, where
[

∂υ˛0,�0

∂˛

]2

�
16�2

0υ2
˛0,�0

˛2
0�1 � ˛0�2 . Hence

j ∂

∂˛
ln fX�Xtjˇ0�j2 � 64

˛2
0�1 � ˛0�2 [1 C 4.25�2

0jUtj2�0 ] �19�

where as previously Ut D �Xt � �0�/	0 denotes a standard APD random variable with parameters
�˛0, �0�. By using (19) together with the moment inequality in (18) we then have

E

[
j ∂

∂˛
ln fX�Xtjˇ0�j2

]
� 64

˛2
0�1 � ˛0�2

[
1 C 8.5�2

0
��1 C 2�0�/�0�

υ2
˛0,�0

�1/�0�

]
< 1 �20�

By using the same reasoning as above, we have

j ∂

∂�
ln fX�Xtjˇ0�j2 � 4

�4
0

[�ln υ˛0,�0�
2 C �2

0

υ2
˛0,�0

�
∂υ˛0,�0

∂�
�2 C ��1 C 1/�0��2] C 4[�

∂υ˛0,�0

∂�
�2

C υ2
˛0,�0

�ln
jXt � �0j

	0
�2]

jXt � �0j2�0

	2�0
0

4

υ2
˛0,�0

C υ2
˛0,�0

jXt � �0j2�0

	2�0
0

[ln�˛0�1 � ˛0��]2 4

υ2
˛0,�0

where
[

∂υ˛0,�0

∂�

]2

D 4υ2
˛0,�0

[ln�˛0�1 � ˛0��]2. Hence

j ∂

∂�
ln fX�Xtjˇ0�j2 � 4

�4
0

f[ln υ˛0,�0 ]2 C 4�2
0[ln�˛0�1 � ˛0��]2 C ��1 C 1/�0��2g

C 16f5[ln�˛0�1 � ˛0��]2 C [ln jUtj]2gjUtj2�0
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Note that [ln jUtj]2 � 2�jUtj2 C 1/jUtj2�, so that

j ∂

∂�
ln fX�Xtjˇ0�j2 � 4

�4
0

f[ln υ˛0,�0 ]2 C 4��2
0 C 20�[ln�˛0�1 � ˛0��]2 C ��1 C 1/�0��2g

C 32fjUtj2��0C1� C jUtj2��0�1�g

Hence, by inequality (18) we have

E

[
j ∂

∂�
ln fX�Xtjˇ0�j2

]
� 4

�4
0

f[ln υ˛0,�0 ]2 C 4��2
0 C 20�[ln�˛0�1 � ˛0��]2 C ��1 C 1/�0��2g

C 64

�1/�0�

{
��3 C 2�0�/�0�

υ2��0C1�/�0
˛0,�0

C ��2�0 � 1�/�0�

υ2��0�1�/�0
˛0,�0

}
< 1 �21�

Similarly, we have j ∂
∂� ln fX�Xtjˇ0�j2 � 4�2

0
jXt � �0j2��0�1�

	2�0
0

D 4�2
0

	2
0

jUtj2��0�1�, and

E

[
j ∂

∂�
ln fX�Xtjˇ0�j2

]
� 8�2

0

	2
0

��2�0 � 1�/�0�

υ2��0�1�/�0
˛0,�0

�1/�0�
< 1 �22�

Note that �0 ½ 1/2 so ��2�0 � 1�/�0� ½ 0, which is required for the nonsingularity of J�ˇ0�

Finally, j ∂
∂	 ln fX�Xtjˇ0�j2 � 2

	2
0

[
1 C 4�2

0
jXt � �0j2�0

	2�0
0

]
D 2

	2
0

[1 C 4�2
0jUtj2�0 ], so that by using

again the result of inequality (18) we get

E

[
j ∂

∂	
ln fX�Xtjˇ0�j2

]
� 2

	2
0

[
1 C 8�2

0
��1 C 2�0�/�0�

υ2
˛0,�0

�1/�0�

]
< 1 �23�

Inequalities (20), (21), (22) and (23) imply that all the elements of J�ˇ0� are finite, therefore I
can use Theorem 5.2 in White (2001, p. 114) to show that condition (iv) of Theorem 7.1 is satisfied.
Finally, the stochastic differentiablity condition (v) of the same theorem can be shown to hold by
using the results obtained by Andrews (1994) for the special case �0 D 1 and extending them to
any �0 > 1/2. I can now apply the results of Theorem 7.1 in Newey and McFadden (1994) to

show that
p

T� ǑT � ˇ0�
d!N�0, J�ˇ0��1�, since in the maximum likelihood case H�ˇ0� D �J�ˇ0�.

This completes the proof of the asymptotic normality result of Proposition 2.
It remains to be shown that my estimator JT� ǑT� of J�ˇ0� is consistent:

JT� ǑT� D T�1
T∑

tD1

�rˇ ln fX�xtj ǑT���rˇ ln fX�xtj ǑT��0 p!J�ˇ0� �24�

For that, I use Theorem 4.4 in Newey and McFadden (1994). First, note that each element of the
gradient rˇ ln fX�Xtjˇ� is continuous with probability one—the only point of discontinuity is at
� and the probability of the corresponding event fXt D �g equals zero. Hence, the only condition I
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need for (24) to hold is that in some neighborhood N of ˇ0 we have E[supˇ2N jrˇ ln fX�Xtjˇ�j2] <

1, i.e., that E
[
supˇ2N j ∂

∂ˇi
ln fX�Xtjˇ�j2

]
< 1 for 1 � i � 4. From (19) we have

j ∂

∂˛
ln fX�Xtjˇ�j2 � 64

˛2�1 � ˛�2

[
1 C 4.25�2jXt � �

	
j2�

]

� 64

˛2�1 � ˛�2

{
1 C 4.25�2 	2�

0

	2� c�

[
jUtj2� C j� � �0

	0
j2�

]}

where Ut D �Xt � �0�/	0 is a standard APD with shape parameters (˛0, �0) and c� is a positive
constant such that �x C y�2� � c��x2� C y2�� for all �x, y� 2 �2. From the moment inequality in
(18) we know that E�jUtj�� � 2υ��/�0

˛0,�0
��1 C ��/�0�/�1/�0�, so we have

E

[
sup
ˇ2N

j ∂

∂˛
ln fX�Xtjˇ�j2

]

� sup
ˇ2N

64

˛2�1 � ˛�2

{
1 C 4.25�2 	2�

0

	2� c�

[
2

��1 C 2��/�0�

υ2�/�0
˛0,�0

�1/�0�
C j� � �0

	0
j2�

]}
< 1 �25�

Similarly, we have j ∂
∂� ln fX�Xtjˇ�j2 � 4

�4 f[ln υ˛,�]2 C 4��2 C 20�[ln�˛�1 � ˛��]2

C ��1 C 1/���2g C 32

{
c�C1

	2��C1�
0

	2��C1�

[
jUtj2��C1� C j� � �0

	0
j2��C1�

]
C c��1

	2���1�
0

	2���1� ð[
jUtj2���1� C j� � �0

	0
j2���1�

]}
. Hence, by inequality (18) we have

E[sup
ˇ2N

j ∂

∂�
ln fX�Xtjˇ�j2] � 4

�4 f[ln υ˛,�]2 C 4��2 C 20�[ln�˛�1 � ˛��]2 C ��1 C 1/���2g

C 32

�1/�0�
fc�C1

	2��C1�
0

	2��C1� [2
��3 C 2��/�0�

υ2��C1�/�0
˛0,�0

C j� � �0

	0
j2��C1�]

C c��1
	2���1�

0

	2���1� [2
��2� � 1�/�0�

υ2���1�/�0
˛0,�0

C j� � �0

	0
j2���1�]g < 1 �26�

Similarly, we have j ∂
∂� ln fX�Xtjˇ�j2 � 4�2

	2 c��1
	2���1�

0

	2���1�

[
jUtj2���1� C j� � �0

	0
j2���1�

]
, so

E

[
sup
ˇ2N

j ∂

∂�
ln fX�Xtjˇ�j2

]
� 4�2

	2 c��1
	2���1�

0

	2���1�

[
2

��2� � 1�/�0�

υ2���1�/�0
˛0,�0

�1/�0�
C j� � �0

	0
j2���1�

]
< 1 �27�
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Finally, we have j ∂
∂	 ln fX�Xtjˇ�j2 � 2

	2

{
1 C 4�2 	2�

0

	2� c�

[
jUtj2� C j� � �0

	0
j2�
]}

, so that by

using again the result of inequality (18) we get

E

[
sup
ˇ2N

j ∂

∂	
ln fX�Xtjˇ�j2

]
� 2

	2

{
1 C 4�2 	2�

0

	2� c�

[
2

��1 C 2��/�0�

υ2
˛0,�0

�1/�0�
C j� � �0

	0
j2�

]}
< 1

�28�
Inequalities (25), (26), (27) and (28) imply that E[supˇ2N jrˇ ln fX�Xtjˇ�j2] < 1. Hence, I

can apply Theorem 4.4 in Newey and McFadden (1994) to show that JT� ǑT�
p!J�ˇ0�. Given the

nonsingularity of J�ˇ0� and the continuity of the inverse function away from zero, it follows that
JT� ǑT��1 is consistent for J�ˇ0��1, which completes the proof of Proposition 2.

ACKNOWLEDGMENTS

I would like to thank the Editor, Tim Bollerslev, and three anonymous Referees for useful
comments, which led to a considerably improved version of the paper. Thanks to Yong Bao,
Christian Bontemps, Jean-Marie Dufour, Nour Meddahi, Denis Pelletier, George Tauchen and all
the participants at the Montreal (2004) CIRANO/CIREQ conference in Financial Econometrics
for their comments and suggestions. All computations and simulations are performed in Matlab
and the corresponding programs are available upon request from the author.

REFERENCES

Aas K, Haff IH. 2006. The generalized hyperbolic skew Student’s t-distribution. Journal of Financial
Econometrics 4: 275–309.

Andrews OWK. 1994. Empirical process ethods in econometrics. In Handbook of Econometrics. Vol. 4, Engle
RF, McFadden DL (eds). Elsevier Science: Amsterdam; 2248–2294.

Artzner P, Delbaen F, Eber JM, Heath D. 1999. Coherent measures of risk. Mathematical Finance 9:
203–228.

Ayebo A, Kozubowski TJ. 2003. An asymmetric generalization of Gaussian and Laplace laws. Journal of
Probability and Statistical Science 1: 187–210.

Bain LJ, Engelhardt M. 1973. Interval estimation for the two-parameter double exponential distribution.
Technometrics 15: 875–887.

Balakrishnan N, Basu AP. 1995. The Exponential Distribution: Theory, Methods and Applications. Gordon
& Breach: New York.

Balakrishnan N, Chandramouleeswaran MP, Ambagaspitiya RS. 1996. BLUE’s of location and scale param-
eters of Laplace distribution based on Type-II censored samples and associated inference. Microelectronic
Reliability 36: 371–374.

Bassett G, Koenker R, Kordas G. 2004. Pessimistic portfolio allocation and Choquet expected utility. Journal
of Financial Econometrics 2: 477–492.

Bawa VS. 1978. Safety first, stochastic dominance and optimal portfolio choice. Journal of Financial and
Quantitative Analysis 13: 255–271.

Bawa VS, Lindenberg EB. 1977. Capital market equilibrium in a mean-lower partial moment framework.
Journal of Financial Economics 5: 189–200.

Birnbaum A, Mike V. 1970. Asymptotically robust estimators of location. Journal of the American Statistical
Association 65: 1265–1282.

Bollerslev T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3):
307–328.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 891–921 (2007)
DOI: 10.1002/jae



920 I. KOMUNJER

Bollerslev T, Wooldridge JM. 1992. Quasi-maximum likelihood estimation and inference in dynamic models
with time-varying covariances. Econometric Reviews 11: 143–179.

Buchinsky M. 1995. Estimating the asymptotic covariance matrix for quantile regression models: a Monte
Carlo study. Journal of Econometrics 68: 303–338.

Chen XI. 2005. Nonparametric estimation of expected shortfall. Mimeo, Iowa State University.
Engle RF. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of United

Kingdom inflation. Econometrica 50: 987–1007.
Feldstein MS. 1969. Mean-variance analysis in the theory of liquidity preference and portfolio selection.

Review of Economic Studies 36(1): 5–12.
Fermanian JD, Scaillet O. 2005. Sensitivity analysis of VaR and expected shortfall for portfolios under netting

agreements. Journal of Banking and Finance 29: 927–958.
Fernandez C, Osiewalski J, Steel MFJ. 1995. Modeling and inference with v-spherical distributions. Journal

of the American Statistical Association 90: 1331–1340.
Fernandez C, Steel MJF. 1998. On Bayesian modeling of fat tails and skewness. Journal of the American

Statistical Association 93: 359–371.
Fitzenberger B. 1997. The moving blocks bootstrap and robust inference for linear least squares and quantile

regressions. Journal of Econometrics 82: 235–287.
Follmer H, Schied A. 2002. Convex measures of risk and trading constraints. Finance and Stochastics 6(4):

429–447.
Giot P, Laurent S. 2004. Modelling daily value-at-risk using realized volatility and ARCH type models.

Journal of Empirical Finance 11: 379–398.
Govindarajulu Z. 1966. Best linear estimates under symmetric censoring of the parameters of double

exponential distribution. Journal of the American Statistical Association 61: 248–258.
Hanoch G, Levy H. 1969. The efficiency analysis of choices involving risk. Review of Economic Studies 36:

335–346.
Hansen BE. 1994. Autoregressive conditional density estimation. International Economic Review 35:

705–730.
Jakuszenkow H. 1979. Estimation of the variance in the generalized Laplace distribution with quadratic loss

function. Demonstratio Mathematica 3: 581–591.
Johnson ME. 1979. Computer generation of the exponential power distributions. Journal of Statistical

Computation and Simulation 9: 239–240.
Johnson NL, Kotz S, Balakrishnan N. 1994. Continuous Univariate distributions (2nd edn). Wiley: New

York.
Koenker R, Bassett G. 1978. Regression quantiles. Econometrica 46: 33–50.
Komunjer I. 2005. Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics

128: 137–164.
Kotz S, Kozubowski TJ, Podgorski K. 2001. The Laplace Distribution and Generalizations: A Revisit with

Applications to Communications, Economics, Engineering, and Finance. Birkhauser: Boston, MA.
Kuester K, Mittnik S, Paolella MS. 2006. Value-at-risk prediction: a comparison of alternative strategies.

Journal of Financial Econometrics 4: 53–89.
Kupiec P. 1995. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives

3: 73–84.
Lingappaiah GS. 1988. On two-piece double exponential distribution. Journal of the Korean Statistical Society

17: 46–55.
Lopez J. 1997. Regulatory evaluation of value-at-risk models. Federal Reserve Bank of New York Research

Paper 9710.
Markowitz HM. 1952. Portfolio selection. Journal of Finance 6: 77–91.
McDonald JB. 1991. Parametric models for partially adaptive estimation with skewed and leptokurtic

residuals. Economics Letters 37: 273–278.
McDonald JB. 1997. Probability distributions for financial models. In Handbook of Statistics, Vol. 14,

Maddala GS, Rao CR (eds). Elsevier Science: Amsterdam; 427–461.
McDonald JB, Newey WK. 1988. Partially adaptive estimation of regression models via the generalized t

distribution. Econometric Theory 4: 428–457.
McNeil AJ, Frey R. 2000. Estimation of tail-related risk measures for heteroskedastic time series: an extreme

value approach. Journal of Empirical Finance 7: 271–300.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 891–921 (2007)
DOI: 10.1002/jae



ASYMMETRIC POWER DISTRIBUTION 921

Nelson DB. 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:
347–370.

Newey WK, McFadden DL. 1994. Large sample estimation and hypothesis testing. In Handbook of Econo-
metrics, Vol. 4, Engle RF, McFadden DL (eds). Elsevier Science: Amsterdam; 2113–2247.

Paolella MS. 2006. Intermediate Probability: A Computational Approach. Wiley: Chichester.
Patton AJ. 2004. On the out-of-sample importance of skewness and asymmetric dependence for asset

allocation. Journal of Financial Econometrics 2: 130–168.
Scaillet O. 2004. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical

Finance 14: 115–129.
Scaillet O. 2005. Nonparametric Estimation of Conditional Expected Shortfall. Revue Assurances et Gestion

des Risques/Insurance and Risk Management Journal 74: 639–660.
Straumann D. 2005. Estimation in Conditionally Heteroskedastic Time Series Models. Springer: Berlin.
White H. 2001. Asymptotic Theory for Econometricians. Academic Press: San Diego, CA.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 891–921 (2007)
DOI: 10.1002/jae


